Technical Note
CMU/SEI-2001-TN-024

20011128 176

Carnegie Mellon
Software Engineering Institute

Model-Based Verification —
Scope, Formalism, and
Perspective Guidelines

David P. Gluch

Santiago Comella-Dorda
John Hudak

Grace Lewis

John Walker

Chuck Weinstock

October 2001

Performance Critical Systems

DiISTRIBUTION STATE

' MENT

Apprpved for Public ReleaseA
Distribution Unlimited

Unlimited distribution subject to the copyright

P

Carnegie Mellon University does not discriminate and Carnegie Mellon University is required not to discriminate in admission, employment, or administra-
tion of its programs or activities on the basis of race, color, national origin, sex or handicap in violation of Title VI of the Civil Rights Act of 1964, Title IX of
the Educational Amendments of 1972 and Section 504 of the Rehabilitation Act of 1973 or other federal, state, or local laws or executive orders.

in addition, Carnegie Mellon University does not discriminate in admission, employment or administration of its programs on the basis of religion, creed,
ancestry, belief, age, veleran status, sexual orientation or in violation of federal, state, or local laws or executive orders. However, in the judgment of the
Carnegie Mellon Human Relations Commission, the Department of Defense policy of “Don't ask, don't tell, don't pursue” excludes openly gay, lesbian
and bisexual students from receiving ROTC scholarships or serving in the military. Nevertheless, all ROTC classes at Carnegie Mellon University are

available to all students.

Inquiries concerning application of these statements should be directed to the Provost, Carnegie Melion University, 5000 Forbes Avenue, Pittsburgh, PA
15213, telephone (412) 268-6684 or the Vice President for Enroliment, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, telephone

(412) 268-2056.

Obtain general information about Carnegie Mellon University by calling (412) 268-2000.

Model-Based Verification —
Scope, Formalism, and
Perspective Guidelines

David P. Gluch

Santiago Comella-Dorda
John Hudak

Grace Lewis

John Walker

Chuck Weinstock

October 2001

Performance Critical Systems

Unlimited distribution subject to the copyright

Technical Note
CMUY/SEI-2001-TN-024

The Software Engincering Institute is a federally funded rescarch and development center sponsored by the U.S.
Department of Defense.

Copyright 2001 by Carnegic Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND. EITHER EXPRESSED OR IMPLIED. AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO.
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT. TRADEMARK. OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and “No Warranty” statements are included with all reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number F19628-00-C-0003 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development
center. The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the
work. in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the

copyright license under the clause at 52.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubweb.html).

printed 11/13/01 10:37 AM 1.0 /pw

Contents

Abstract
1 Model-Based Verification

2 Introduction to Scope, Formalism, and
Perspective

2.1 Scope

2.2 Formalism

2.3 Perspective

2.4 The Broader Context of MBV

3 Generating the Statement of Scope,
Formalism, and Perspective

3.1 Team Process
3.2 Factors to Consider

3.3 Fine-Tuning the Scope, Formalism,
and Perspective

4 Example of a Scope, Formalism, and
Perspective Statement

4.1 Template

4.2 Scope Section

4.3 Formalism Section
4.4 Perspective Section

4.5 Example of Scope, Formalism, and
Perspective Statement

References

~N o A bW

[«]

10

12
12
12
12
13

13

15

CMU/SEI-2001-TN-024

CMU/SEI-2001TN-024

List of Figures

Figure 1: Model-Based Verification Process and Artifacts

1

CMU/SEI-2001-TN-024

CMU/SEI-2001-TN-024

Abstract

The goal of model-based verification (MBV) is to reduce the number of defects. Like any
other quality assurance (QA) technique. it is not equally efficient in every situation. It is
critical to determine where and how to use MBYV to achieve the largest impact in terms of the
number and criticality of defects found with a reasonable amount of effort. This document
provides guidance for defining the scope, formalism (approach and tools), and perspective for
applying MBYV. The critical (important or risky) aspects of the system and its development,
including both programmatic and technical issues, drive these choices and form the basis for
these guidelines.

CMU/SEI-2001-TN-024 v

Vi

CMU/SEI-2001-TN-024

1 Model-Based Verification

Model-based verification (MBV) is a systematic approach to finding defects (errors) in
software requirements, designs, or code [Gluch 98]. The approach judiciously incorporates
mathematical formalism, in the form of models, to provide a disciplined and logical analysis
practice, rather than a “proof ’-of-correctness strategy. MBV involves creating the essential
models of system behavior and analyzing them against formal representations of the expected
properties.

The artifacts and key processes used in MBV are shown in Figure 1. Model building and
analysis are the core parts of MBV practices. These two activities are performed using an
iterative and incremental approach, where a small amount of modeling is followed by a small
amount of analysis. A parallel compile activity gathers detailed information on errors and
potential corrective actions.

Define Scope

—’(Formalism, & Perspective (SFP) J

Projecf Level Activitieg

Statement Modiﬂedv A rt IfaCtS
of Scope, sussmEsEEn Statement Expected

Formalism & of Scope,

Per i} - F ism &

},

Compile

reviewed and materials used as
reference or guidance in conducting
the activity

]

Buirding | Essential> Formal m eose > Claims Lo;:
H o ¥ Modeits) Modei(s)

Artlfacts Guldetines }§

Legend Input Artifacts: Specification being 77T Output Artifacts: Artifacts created

during one or more of the activities.
Some outputs generated in one activity
are used as inputs to other activities.

Figure 1: Model-Based Verification Process and Artifacts

CMU/SEI-2001-TN-024

Essential models are simplified formal representations that capture the essence of a system,
rather than provide an exhaustive, detailed description of it. Through the selection of only
critical (important or risky) parts of the system and appropriately abstracted perspectives, a
reviewer using model-based techniques. can focus the analysis on the critical and technically
difficult aspects of the system. Driven by the discipline and rigor required in the creation of a
formal model. simply building the model. in and of itself. uncovers errors.

Once the formal model is built, it can be analyzed using automated model-checking tools
such as SMV (Symbolic Model Verifier). Within this analysis, potential defects are identified
while both formulating claims about the system’s expected behavior and analyzing the model
using automated model-checking tools. Model checking has been shown to uncover the
especially difficult-to-identify errors: the kind of errors that result due to the complexity
associated with multiple interacting and interdependent components [Clarke 96]. These

include embedded as well as highly distributed applications.

Many different formal modeling and analysis techniques are employed within MBV [Gluch
98, Clarke 96]. The choices are based upon the type of system being analyzed and the
technological foundation of the critical aspects of that system. Deciding which techniques to
use involves an engineering tradeoff among the technical perspective, formalism, level of

abstraction, and scope of the modeling effort.

The specific techniques and engineering practices of applying MBV to software verification

have yet to be fully explored and documented. A number of barriers to the adoption of MBV
have been identified including the lack of good tool support, expertise in organizations, good
training materials, and process support for formal modeling and analysis.

In order to address some of these issues, the Software Engineering Institute (SEI) has created
a process framework for model-based verification practices that identifies a number of key
tasks and artifacts. Additionally, the SEI is working on a series of technical notes that can be
used by MBV practitioners. Each technical note is focused on a particular MBYV task,
providing guidelines and techniques for one aspect of MBYV practices. Currently, the technical
notes that are planned address abstraction in building models, generating expected properties,
generating formal claims, and interpreting the results of analysis.

This technical note provides guidance for defining the scope, formalism (approach and tools),
and perspective for applying MBV. The critical (important or risky) aspects of the system and
its development, including both programmatic and technical issues, drive these choices and
form the basis for these guidelines.

2 CMU/SEI-2001-TN-024

2 Introduction to Scope, Formalism, and Perspective

In a world in which quality rules and resources are unlimited, we would probably verify
every single subsystem from every possible angle and under the most stringent conditions.
Unfortunately, resources are rarely unlimited, and quality is just another tradeoff in a
complex management and engineering decision that also includes time to market,
functionality, and economical viability.

In this imperfect real world, we need to focus our limited resources to have the largest impact
with the smallest cost. MBV, as any other quality assurance (QA) technique, is not equally
efficient in every situation. We have to decide where and how to use MBYV to have the
greatest impact in terms of the number and criticality of defects found. In particular, three
parameters must be defined:

1. scope: The portion of a system that is to be modeled is its scope. For example, the scope
could be to model all of the system at a high level of abstraction (e.g., model and
analyze the fault response of the entire system). In other cases, the scope could be
limited to model a specific part of the system in greater detail (e.g., model and analyze
the communication module).

2. formalism: This parameter of the MBV effort defines the modeling approaches and
tools to be used. Modeling techniques that can be employed in MBV include state-
machine representations, process algebras, and rate-monotonic modeling. Each of those
techniques is supported by a number of tools.

3. perspective: The modeling perspective is the context for representing the behavior and
characteristics of a system. Perspective is the criteria and the guide for the abstraction
process. A perspective could be the user’s view of a system, or it could be the
representation of a specific feature, function, or capability. For example, for an aircraft
fly-by-wire computer system, one perspective would be to model the system from a
fault-response perspective. The model might describe states of the system in terms of the
number or type of faults that may occur (e.g., the no-fault state, single-fault state, and
loss-of-roll attitude information). An alternative perspective might consider the flight
modes of the system (e.g., takeoff, climb out, cruise, and landing).

For example, in reviewing the design specification for a networked system, the protocol
response to network errors may be identified as critical. The protocol becomes the focus of
the modeling effort (the scope), and a formal state-machine technique (formalism) is used to
analyze its behavior in error situations (perspective).

CMU/SEI-2001-TN-024 3

Scope. formalism, and perspective are strongly dependent on each other. If. for example, we
want to study the redundancy-management behavior of a system (perspective). we will surely
focus on those subsystems that are redundant (scope). and use a behavior-modeling
formalism (like state machines). Consequently. those decisions will be taken together because

they rely on a common set of factors.

2.1 Scope

The scope delineates what will and will not be verified. The scope can be something as broad
as the whole system or as narrow as a module running in one of many subsystems. The scope
can be physical (a particular subsystem), logical (a module or sequence), or temporal (some
time interval of the system operation). In some situations, it is useful to use different
approaches to verify different parts of the system; this would correspond to a number of
scopes associated to potentially different perspectives and formalisms. These are some

examples of scope:

e the whole system

e a vital system component

e shared resources or shared data
e complex concurrent processes
e intricate switching logic

e complicated error sequences

e the interval of time from system started to system operational

Scope is mainly concerned with the decomposition of a large problem (the system) into more
manageable subproblems. This is extremely important to make MBYV viable as current
practices do not scale well and can cope only with limited size problems. After model
checking the different parts of the system, compositional reasoning techniques can be applied
to infer global properties about the entire system [Berezin 98].

2.2 Formalism

Formalism defines the modeling technique that will be used to verify the system. During
MBYV, formalism is strongly determined by the selected scope and perspective; there are some
formalisms that are better suited for a particular situation than others. If, for example, the
temporal characteristics of a real-time system are being verified, we need a modeling
formalism that supports temporal clauses. Other factors to consider include the in-house
expertise and the depth required for the verification.

Knowledge of the various modeling techniques’ capabilities is vital to making the right
choice. In general, decisions on specific modeling techniques should consider the
characteristics of the system being modeled, the efficacy of the modeling technique when
applied to those characteristics, the complexity of the model being generated, and the risks

4 CMU/SEI-2001-TN-024

associated with the system. In particular. the risks can help to determine the level of formality
at which a system should be analyzed (e.g.. a highly formalized model would be appropriate
for a safety-critical system). High assurance often implies high cost, however. and these types
of tradeoffs should be considered when choosing a modeling technique {Gluch 95]. The
verification of the temporal-logic properties of finite-state systems has enjoyed significant
growth and become the prominent formalism for the MBV of software systems [Clarke 86].
This prominence resulted from the fact that efficient algorithms have been developed that
make it possible to verify digital systems with realistic size. Symbolic model checking, for
example. can verify systems with more than 100 binary variables [Burch 90}. Additionally,
this kind of model checking has shown remarkable success in verifying digital hardware
designs and has shown some promising results in research studies on software-based systems.

A key issue in the verification of finite-state systems is the selection of the temporal language
used to specify properties. Two possible views regarding the unfolding of time induce two
types of temporal logic'. In linear temporal logic (LTL), the evolution of time is viewed as a
sequence of states — a single line of possible states. In contrast, computational tree logic
(CTL), a version of branching temporal logic, views the evolution of time as possibly
proceeding along a multiplicity of paths. Each path is a linear sequence of states.

The last years have seen heated discussion about the relative merits of LTL and CTL [Vardi
01]. It has been argued that LTL is easier to use and that CTL is easier to verify and has better
tool support. However, new developments are weakening these arguments. The complexity of
CTL can be mitigated using tools and techniques that hide the details of the formalism’®
[Corbett 00a, Holt 99]. Also, the SMV and other tools currently support LTL. Personally, we
have found both notations to be useful and worth exploring.

In addition to selecting a formalism, we need a tool that supports it. Most of the tools existing
today are primarily research developments that require significant expertise on the part of
users. However, commercial tools for software model checking are beginning to emerge,
which are normally more user friendly and easier to use [I-Logix 01]. Examples of MBV-
capable tools are

e Carnegie Mellon University’s version of SMV [McMillan 92b]
e Bell Labs’ SPIN [Holzmann 97]

e Kansas State University’s Bandera {Corbett 00b]

e Microsoft’s SLAM Toolkit [Thomas 01]

e University of Dortmund’s VERDICT [Kowalewski 97]

Interval logic and other temporal logic variants are not covered in this report.

2 Comella-Dorda, Santiago; Gluch, Dave; Hudak, John; Lewis, Grace; & Weinstock, Chuck. Model-
Based Verification — Claim Creation Guidelines. Pittsburgh, PA: Software Engineering Institute, to
be published.

CMU/SEI-2001-TN-024 5

2.3 Perspective

The scope determines what areas of the system we are going to focus on. and the perspective
states what is interesting about those areas. Normally. it is impractical to model the general
behavior of a component as this behavior is often defined by an excessive number of states. A
more specific view of the system component is recommended. For example, we can focus our
effort on studying the control flow or the initialization sequence. The following is a list of

possible perspectives for a particular component:

e interprocess communications

e flow of control

¢ redundancy management

e coherency (cache coherence)

e emergency procedures/failure modes
e initialization

e time-outs

e message sequencing — incorrect sequencing of events or messages

If the scope is characterized as a decomposition mechanism, the perspective can be seen as an
abstraction mechanism. Deciding what to consider about a particular component is equivalent
to deciding what to ignore. When we decide on a perspective, we are abstracting away all the
characteristics and behaviors that are not related to the selected perspective.

The perspective guides not only the model-building activity, but also the expected property
generationl. Expected properties are natural-language statements about the behavior of a
system: behavior that is consistent with user expectations. Expected properties are formalized
as claims and verified against system models. Building and verifying general statements
about system behavior does not significantly improve confidence in the quality of the system,
as these statements are necessarily too broad. A better approach is to be more focused and
exhaustive and to gain confidence in some critical aspects of the system. Thus, the
perspective provides not only the view for building models, but also the focus for defining

expected properties.

Together the scope and perspective can be used to make the verification process iterative.
Initially, a small component (scope) can be verified from a single perspective. Later, more
components can be added, or more perspectives can be considered. This incremental
approach can be followed until a satisfactory coverage of the subject system is reached. Since
the scope and perspective will change over time, it may be interesting to put them under
configuration management and track their evolution through the project.

' Gluch, Dave; Comella-Dorda, Santiago; Hudak, John; Lewis, Grace; & Weinstock, Chuck.
Guidelines for Generating Expected Properties. Pittsburgh, PA: Software Engineering Institute, to

be published.

CMU/SEI-2001-TN-024

2.4 The Broader Context of MBV

The broader context in which the MBV effort is implemented has a critical role in
determining the scope, formalism. and perspective. Especially important is the extent to
which MBYV is integrated within the development effort.

Current software-development practices often involve a trial-and-error approach. Prototypes
of the system are built; their feasibility is studied; and depending on the results of this
analysis, a bigger prototype is built to study its feasibility. Translating this concept to civil
engineering would mean building a small bridge, seeing if it falls down, and iteratively
enlarging the toy-size bridge until the desired size is reached. This is unacceptable in civil
engineering, but currently it is often the approach for building software systems.

We envision a paradigm in which software engineers manipulate models instead of real
artifacts. The quality of the system is assured by the analysis and verification of models. In
this context, MBV permeates the whole development effort. The project evolves through
increasingly detailed models, and MBYV practices ensure the correctness and quality of those

models.

Currently, MBV is not well integrated into the development process. It can be seen as an add-
on to improve software-engineering practices. Specifically, MBV is often applied as an
augmentation of the peer-review activities [Gluch 99]. MBV improves a review team’s ability
to deal with complexity, by supplementing the “process formality” of facilitated group
interactions with selective mathematical formality—formal modeling practices.

When MBV is used as an add-on to peer reviews, the definitions of scope, formalism, and
perspective are included in the plan for the review. In particular, decisions must be made on
what areas of the reviewed artifacts should be modeled, what modeling techniques to employ,
and what expected properties are to be verified. That is, the scope, formalism, and
perspective must be defined and documented. These choices, as well as considerations of the
time and resources required for the review effort, will help the team coordinate modeling
activities with those of the general review process.

In the following sections, we make the assumption that MBV is being used as an addition to
development practices and not as an integral part of a model-centered development approach.

CMU/SEI-2001-TN-024 7

3 Generating the Statement of Scope, Formalism, and

Perspective

The initial step in MBV is defining the objectives, approaches, and plans for execution of the
MBYV activity. The outcome of this planning step should include an initial statement of scope,

formalism, and perspective, as it defines

e the aspects of the system that should be modeled
e the modeling techniques that are appropriate
o the properties of the system that must be verified

Critical aspects of the system should be used as the basis for these decisions. The amount of
risk involved as well as the importance of relevant requirements determines which aspects are
critical. Since generally it is not feasible to model all of the system in detail, the choice of
these critical aspects requires substantial domain knowledge as well as knowledge about the
relevant implementation details of the system. To be effective in these decision processes, it
is imperative that the team defining the plan has a broad understanding of the system’s
requirements, design, and environment. If this is not the case, an individual with this
knowledge should be included in the planning activities.

3.1 Team Process

Making decisions about the scope, formalisms, and perspective as a team exercise is
important, as different people have different insights about the problem. The process of
obtaining a consensus helps to guarantee that every important factor has been considered.
Additionally, the people who are involved in such a decision may become more committed to
implementing the decision that is eventually made. The latter is especially important if those
who decide on the scope, formalism, and perspective will also be conducting the MBV
(which is something that we strongly recommend).

The literature listed in the References section of this document discusses several group-
decision-making techniques including Delphi [Linstone 75] and the Analytic Hierarchy
Process (AHP) [Saaty 80]. These techniques are all well known and extensively documented,
so we are not going to cover them in this report. In fact, the particular technique is not as
important as ensuring that the following goals are achieved in the decision-making process:

e The decision must benefit from the expertise of every team member. This goal may be
threatened by the presence of members with strong personalities and a vested interest in
making their opinion prevail over their peers’.

8 CMU/SEI-2001-TN-024

e The team interaction has to provide additional insight. different from that of the team
members. The group has to be more than the sum of its members. The team leader has to
foster an environment in which there are no “wrong™ inputs and every comment initiates
constructive discussion.

e Every assumption has to be validated by the team as a whole. Often. this will reveal any
weaknesses and shortcomings in people’s assumptions. Team members have to be critical
and refuse to accept anything a priori.

e The final decision has to be fully endorsed by every member of the team.

In order to achieve these goals, the team requires a diverse set of backgrounds including
system and domain experts, MBV practitioners, and QA advocates.

The following section enumerates some factors and recommendations to be considered while
discussing scope, formalism, and perspective.

3.2 Factors to Consider

There are a variety of factors, both programmatic and technical, to consider when
establishing the scope, formalism, and perspective. These factors are also important
considerations in the generation of expected properties and claims for the system.

We are defining programmatic factors loosely as those that are interesting from a
management point of view and take into consideration nontechnical issues. Budget and
schedule are probably the best well-known programmatic factors. For example, if there are x
number of dollars to spend in MBYV activities, the team should not select a scope that requires
10*x dollars.

Economical analysis and return on investment (ROI) are important factors to consider when
defining the scope, formalism, and perspective. Every QA technique has the same basic
constraint: defects are removed at a cost. Out of all the QA activities, software inspections
have proved to be one of the most cost-effective techniques, because the early detection of
defects results in a large savings [Ebenau 94, Fagan 76]. (The cost of fixing defects increases
geometrically with the project phase [Basili 01]). MBV is a more systematic and formal
approach to inspections. While this makes MBV more expensive than traditional reading-
based inspections, it also makes MBV more suitable for finding certain kinds of defects.
Given those characteristics, we can make a cost/benefit assessment based on the following
factors:

e the costs associated with applying MBV

e the number, criticality, and complexity of those defects likely to be found by MBV that
might not be found in a traditional inspection

e the side benefits derived from MBYV including a better understanding of the system
behavior and the potential later use of the models created during the MBV effort

e the cost of failure due to a defect that was not found in time

CMU/SEI-2001-TN-024 9

This analysis can help to determine the areas and aspects of the system in which it makes
economical sense to conduct MBV. It can also determine the extent and level of formalism at

which MBV should be applied.

There is another family of non-quantifiable programmatic factors that are concerned with
politics. expectation management. and customer relations. For example. there may be a
special interest in a particular component not because of its criticality or technical
complexity, but because the customer showed special concern about it. This type of
programmatic factor may appear arbitrary, but it is critical for the long-term success of a

project.

Technical factors. on the other hand, are the day-to-day concern of engineers. These factors
cover the viability of the system in terms of its quality attributes including correctness,
performance, reliability, and others. Engineers should determine what is critical for the
system operation, what is technically challenging, and what is better suited for MBV. The
following are a few examples of technical concerns that may determine the scope, formalism,

and perspective:

e unprecedented systems or parts of systems
e complex resource contention

e intense real-time/time-driven systems

e high reliability

e concurrency or distributed functions

e extensive interactions among components

The careful consideration of these and related factors will increase the chances of selecting a
scope, formalism, and perspective that leverages the capabilities of MBV and makes sensible

use of available resources.

3.3 Fine-Tuning the Scope, Formalism, and Perspective

Independently of the method used to decide the scope, formalism, and perspective, the
decision must be revisited. Every software project has peculiarities that make it impossible to
select the optimal combination of scope, formalism, and perspective a priori. As the
verification effort progresses, practitioners will get a better sense of what areas are benefiting
most from the modeling activities. The team will discover areas with poor quality or
unexpected combinational complexity and find out which formalism fits better considering
the current system and the level of effort that is required.

The system environment is surely going to evolve, and this evolution will make many of the
elements of the scope, formalism, and perspective obsolete after a while. This dynamic nature
of the system makes a tight collaboration between the MBYV reviewers and the system

10 CMU/SEI-2001-TN-024

analysts/developers critical. A good way of ensuring this tight collaboration is to present the
results from the model-checking effort to the development team. This presentation will
validate the defects found in addition to providing valuable feedback for refining the scope.

formalism. and perspective statement.

CMU/SEI-2001-TN-024 1

4 Example of a Scope, Formalism, and Perspective

Statement

The Scope, Formalism. and Perspective Statement is a project-level document that guides
MBYV activities and is usually modified as a result of the iterative nature of the process,
especially in the Perspective section that will evolve as the modeling is performed. The Scope
and Formalism sections are more stable because they are more global. They generally
require a team decision for modification.

4.1 Template
The Scope. Formalism, and Perspective Statement is a short document based on the following

template.

1. Scope
1.1. Description
1.2. Rationale
2. Formalism
3. Perspective
3.1. General Description
3.2. Specific Guidelines
3.3. Issues Requiring Special Consideration

3.4. System Attributes Explicitly Ignored

4.2 Scope Section
The Description describes the system or subsystems that will be modeled. The Rationale is a
short paragraph that explains why this area is being explored and the reasons for building the

model.

4.3 Formalism Section

This section identifies the approaches that will be used to model the system, often
summarizes how and to what portion of the system the tools might be applied, and sometimes
suggests other approaches that may be used. The Formalism section may address specific
techniques, tools, notations, and configuration-management issues.

12 CMU/SEI-2001-TN-024

4.4 Perspective Section

The General Description describes the focus of the effort and includes

L.

the properties to investigate (e.g., tolerance to a specific set of faults. state completeness.
and message protocol completeness)

the subsystems involved as they relate to the scope that is established for the analysis
effort (e.g.. fire-control computer. interfaces to radar, and rocket’s weapon subsystem)

operational modes or profiles (scenarios) (e.g., automatic acquisition and targeting or
making a specific variation of a chemical)

The Specific Guidelines are statements about critical aspects and issues. They should identify
specific considerations and provide guidance for investigating them. They can also be seen
as precursors to or explicit statements of expected properties. These statements may include

some or all of the following:

A

o

initial conditions/assumptions about external entities

operational sequences or modes of operation

outputs and associated attributes (persistent, transient, periodic, etc.)
validation of “normal” modes of operation (the intended operation)

specific abnormal operations and behavior (Certain abnormal conditions should be
handled in a specific way.)

timing issues (e.g., synchronization, deadlock, and livelock)

protocol/algorithmic validation (if checking protocols or algorithms, the issues that are
important)

The Issues Requiring Special Consideration section is a short, descriptive paragraph of each
issue that is of special concern and should be explored with greater attention. This should
include an explanation of the rationale for highlighting this issue (i.e., why this area is being
explored and why this model is being built).

Finally, the System Attributes Explicitly Ignored section states any issues that don’t need to be
addressed and the rationale for excluding them.

4.5 Example of Scope, Formalism, and Perspective Statement

1. Scope

1.1. Description

The MBYV activities will focus on the unpiloted aircraft’s flight-control computer system, the
communications network that connects the sensors, the flight-control computer, and the

actuators.

CMU/SEI-2001-TN-024 13

1.2. Rationale

These systems are part of the flight and safety-critical elements of the aircraft.

2. Formalism

State-machine modeling and the SMV approach will be used as well as possibly SPIN for the

analysis of the communications protocol.

Other approaches and tools may be applied as needed. These will be assessed based upon the
results of the analysis effort. Changes will be made as appropriate through the normal project

tracking and planning processes.
3. Perspective

3.1. General Description

The modeling will focus on the redundancy-management aspects of the system and the
associated fault responses. The total set of operational modes and all possible fault scenarios
should be considered for the key subsystems identified in the scope.

3.2. Specific Guidelines

- Consider only the basic processing states of each redundant component.
- Consider the normal and fault responses of the checker.

- Consider the coordination of outputs sent to the checker.

- Explore the fault response logic in the checker.

- Address the impact of potential error states identified by the checker.

3.3. Issues Requiring Special Consideration

The synchronization strategy is not defined explicitly in the specification. The implications of
this should be explored in detail.

3.4. System Attributes Explicitly Ignored

The algorithms used by the flight-data-processing units are ignored explicitly, because they
are being analyzed by another verification team.

14 CMU/SEI-2001-TN-024

References

[Basili 01]

[Berezin 98]

[Burch 90]

[Campos 94]

[Clarke 86]

[Clarke 94]

- [Clarke 95]

Basili, Vic & Boehm, Barry. “Software Defect Reduction Top 10 List.”
Computer 34, 1 (January 2001): 135-137.

Berezin, S.; Campos, S.; & Clarke, E. Compositional Reasoning in
Model Checking (CMU-CS-98-100). Pittsburgh, PA: School of
Computer Science, Carnegie Mellon University, February 1998.
Available WWW: <http://reports-archive.adm.cs.cmu.edu/anon/1998/
CMU-CS-98-106.ps> (1998).

Burch, J.R.; Clarke, E.M.; McMillan, K.L.; Dill, D.L.; & Hwang, L.J.
“Symbolic Mode! Checking: 10 States and Beyond,” 428-439.
Proceedings of the 5th Symposium on Logic in Computer Science.
Philadelphia, PA, June 4-7, 1990. Los Alamitos, CA: IEEE Computer
Society Press, 1990.

Campos, S.; Clarke, E.; Marrero, W.; Minea, M.; & Hiraishi, H.
“Computing the Quantitative Characteristics of Finite-State Real-Time
Systems,” 266-270. Proceedings of the 1994 IEEE Real-Time Systems
Symposium. San Juan, Puerto Rico, December 7-9, 1994. Los
Alamitos, CA: IEEE Computer Society Press, 1994

Clarke, E.M.; Emerson, E.A.; & Sistla, A.P. “Automatic Verification of
Finite-State Concurrent Systems Using Temporal Logic

Specifications.” ACM Transactions on Programming Languages and
Systems 8, 2 (January 1986): 244-263.

Clarke, E.; Grumberg, O.; & Hamaguchi, K. “Another Look at LTL
Model Checking,” 415-424. Proceedings of the Sixth International
Conference on Computer-Aided Verification CAV ’94. Stanford, CA,
June 21-23, 1994. Lecture Notes in Computer Science, Volume 818.
New York, NY: Springer-Verlag, 1994.

Clarke, Edmund M., et al. “Verification of the Futurebus+ Cache
Coherence Protocol.” Formal Methods in System Design 6, 2 (March
1995): 217-232.

CMU/SEI-2001-TN-024

16

[Clarke 96]

[Corbett 00a]

[Corbett 00b]

[Ebenau 94]

[Fagan 76]

[Gluch 95]

[Gluch 98]

Clarke. E.M. & Wing. Jeannette. “Formal Methods: State of the Art
and Future Directions.”” ACM Computing Surveys 28. 4 (December
1996): 626-643.

Corbett, James C.; Dwyer. Matthew B.; Hatcli. John: & Robby. “A
Language Framework For Expressing Checkable Properties of
Dynamic Software.” Proceedings of the 7" SPIN Workshop. Stanford,
CA. August 30 - September 1, 2000. Lecture Notes in Computer
Science Volume 1885, ISSN 0302-9743. New York, NY: Springer-
Verlag, September 2000.

Corbett, James; Dwyer, Matthew; Hatcliff, John; Pasareanu, Corina;
Robby; Laubach, Shawn; & Zheng, Hongjun. “Bandera: Extracting
Finite-State Models from Java Source Code.” Proceedings of the
22nd International Conference on Software Engineering. Limerick,
Ireland, June 4-11, 2000. Los Alamitos, CA: IEEE Computer Society
Press, 2000.

Ebenau, Robert G. & Strauss, Susan H. Software Inspection Process.
New York, NY: McGraw-Hill, 1994.

Fagan, M. “Design and Code Inspections to Reduce Errors in
Program Development.” IBM Systems Journal 15, 3 (1976): 182-211.

Gluch, David P.; Dorofee, Audrey J.; Hubbard, Elizabeth A.; &
Travalent, John J. A Collaboration in Implementing Team Risk
Management (CMU/SEI-95-TR-016, ADA309157). Pittsburgh, PA:
Software Engineering Institute, Carnegie Mellon University, 1995.
Available WWW: <http://www.sei.cmu.edu/publications/documents/
95.reports/95.tr.016.html> (1995).

Gluch, D. & Weinstock, C. Model-Based Verification: A Technology
for Dependable System Upgrade (CMUY/SEI-98-TR-009,
ADA354756). Pittsburgh, PA: Software Engineering Institute,
Carnegie Mellon University, 1998. Available WWW
<http://www.sei.cmu.edu/publications/documents/
98.reports/98tr009/98tr009abstract.html> (1998).

16

CMU/SEI-2001-TN-024

[Gluch 99]

[Holt 99]

[Holzmann 97]

[I-Logix 01]

[Kowalewski 97]

[Lichtenstein 85]

[Linstone 75]

[McMillan 92a]

[McMillan 92b]

Gluch, David P. & Brockway. Jared. An Introduction to Software
Engineering Practices Using Model-Based Verification (CMU/SEI-
99-TR-005. ADA366089). Pittsburgh, PA: Software Engineering
Institute. Carnegie Mellon University, April 1999. Available WWW:
<http://www.sei.cmu.edu/publications/documents/99.reports/
99tr005/ 99tr005abstract.html> (1999).

Holt. Alexander. “Formal Verification with Natural Language
Specifications: Guidelines, Experiments and Lessons So Far.” South
African Computer Journal 24 (November 1999): 253-257.

Holzmann, Gerard J. “The Model Checker SPIN.” IEEE
Transactions on Software Engineering 23,5 (May 1997): 279-295.

I-Logix, Inc. “I-Logix Introduces Formal Verification Technology to
Systems Engineering with the Release of the Statemate MAGNUM
Model Checking Products” [online]. Available WWW: <URL.:
http://www.ilogix.com/frame_html.cfm> (May 16, 2001).

Kowalewski, Stefan & Treseler, Heinz. “VERDICT - A Tool for
Model-Based Verification of Real-Time Logic Process Controllers,”
217-221. Proceedings of the 1997 Joint Workshop on Parallel and
Distributed Real-Time Systems. Geneva, Switzerland, April 1-3,
1997. Los Alamitos, CA: IEEE Computer Society Press, 1997.

Lichtenstein, O. & Pnueli, A. “Checking that Finite-State Concurrent
Programs Satisfy Their Linear Specification,” 97-107. Conference
Record of the Twelfth ACM Symposium on the Principles of
Programming Languages. New Orleans, Louisiana, January 13-16,
1985. New York, NY: ACM, 1985.

Linstone, H.A. & Turoff, M. The Delphi Method: Techniques and
Application. Reading, MA: Addison-Wesley, 1975.

McMillan, K.L. Symbolic Model Checking: An Approach to the State
Explosion Problem (CMU-CS-92-131). Pittsburgh, PA: School of
Computer Science, Carnegie Mellon University, 1992.

McMillan, K.L. “Symbolic Model Checking - An Approach to the
State Explosion Problem.” PhD diss., School of Computer Science,
Carnegie Mellon University, 1992.

CMU/SEI-2001-TN-024

17

[Saaty 80]

[Thomas 01]

[Vardi 01]

Saaty. T.L. The Analvtic Hierarchy Process. New York. NY:
McGraw-Hill, 1980.

Ball. Thomas & Rajamani. Sriram K. “Automatically Validating
Temporal Safety Properties of Interfaces.” 103-122. Proceedings of
the 8" International SPIN Workshop on Model Checking of Software.
Toronto. Canada, May 19-20. 2001. Lecture Notes on Computer
Science, Volume 2057. New York, NY: Springer-Verlag, 2001.

Vardi. Moshe Y. “Branching Vs. Linear Time: Final Showdown,” 1-
22. Proceedings of TACAS 2001 - Tools and Algorithms for the
Construction and Analysis of Systems. Genova, Italy, April 2-6, 2001.
Lecture Notes in Computer Science, Volume 2031. New York, NY:

Springer-Verlag, 2001.

18

CMU/SEI-2001-TN-024

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of informati
sources, gathering and maintaining the data needed, an

on is estimated to average 1 hour per response. including the time for reviewing instructions, searching existing data
d completing and reviewing the collection of information. Send comments regarding this burden estimate or any

other aspect of this collection of information. including suggestions for reducing this burden. to Washington Headquarters Services. Directorate for information Operations

and Reports. 1215 Jefferson Davis Highway. Suite 1
0188), Washington. DC 20503.

204, Arington. VA 22202-4302. and to the Office ot Management and Budget, Paperwork Reduction Project (0704-

1. AGENCY USE ONLY 3. REPORT DATE 3. REPORT TYPE AND DATES COVERED
(Leave Blank) October 2001 Final

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
Model-Based Verification — Scope, Formalism, and Perspective Guidelines F19628-00-C-0003

6. AUTHOR(S)
David P. Gluch, Santiago Comella-Dorda, John Hudak, Grace Lewis, John Walker, Chuck Weinstock

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Software Engineering Institute REPORT NUMBER
Carnegie Mellon University CMU/SEI-2001-TN-024
Pittsburgh, PA 15213

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY
HQ ESC/XPK REPORT NUMBER
5 Eglin Street
Hanscom AFB, MA 01731-2116

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT 128 DISTRIBUTION CODE
Unclassified/Unlimited, DTIC, NTIS

13. ABSTRACT (MAXIMUM 200 WORDS)
The goal of model-based verification (MBV) is to reduce the number of defects. Like any other quality assurance (QA)
technique, it is not equally efficient in every situation. It is critical to determine where and how to use MBV to achieve
the largest impact in terms of the number and criticality of defects found with a reasonable amount of effort. This
document provides guidance for defining the scope, formalism (approach and tools), and perspective for applying MBV.
The critical (important or risky) aspects of the system and its development, including both programmatic and technical
issues, drive these choices and form the basis for these guidelines.

14. SUBJECT TERMS 15. NUMBER OF PAGES
model-based verification, MBV, scope, formalism, perspective 26

16. PRICE CODE

17. SECURITY CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY CLASSIFICATION OF
THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102

